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The New Rules of Measurement 

S u s a n  E. E m b r e t s o n  
University of Kansas 

Classical test theory, which the authors maintain applied psychologists are still too often exclusively 
taught, are contrasted with the new rules of  measurement .  In the newer, model-based version o f  test 
theory, called item response theory (IRT),  some well-known rules o f  measurement  no longer apply. 
Six old rules of  measurement  that conflict with the new rules are reviewed, and intuitive explanations 
of  the new rules are provided. Readers are also directed to additional informational sources about 
IRT, which, it is argued, every psychologist should be familiar with. 

In an ever-changing world, psychological testing remains the 
flagship of applied psychology. Although both the context of 
application and the legal guidelines for using tests have changed, 
psychological tests themselves have been relatively stable. Many 
historically valued tests, in somewhat revised forms, remain in 
active current use. Further, although several new tests have de- 
veloped in response to contemporary needs in applied psychol- 
ogy, the principles underlying test development have remained 
constant. Or have they? 

Classical test theory has served test development well over 
several decades. Guiliksen's (1950) classic book, reprinted even 
in the 1990s, is often cited as the defining volume. However, 
classical test theory is much older. Many procedures were pio- 
neered by Spearman ( 1907, 1913 ). Most psychologists should, 
and in fact do, know its principles. In some graduate programs, 
classical test theory is presented in a separate course that is re- 
quired for applied psychologists and elective for other areas. In 
other graduate programs, classical test theory is part of the basic 
curriculum in testing methods for courses for clinical, counsel- 
ing, industrial-organizational, and school psychologists. 

However, since Lord and Novick's (1968) classic book intro- 
duced model-based measurement, a quiet revolution has oc- 
curred in test theory. Model-based measurement, known as 
item response theory (IRT) or latent trait theory, has rapidly 
become mainstream as a theoretical basis for psychological 
measurement. Increasingly, tests are developed from model- 
based measurement not only because the theory is more plausi- 
ble but also because the potential to solve practical testing prob- 
lems is greater. 

A large family of diverse IRT models are now available to 
apply to an assortment of measurement tasks. IRT applications 
to available tests will be increasing. Although the early IRT 
models emphasized dichotomous item formats (e.g., the Rasch 
model),  extensions to other item formats, such as rating scales 
(Andrich, 1982) and partial credit scoring (Masters, 1982 ) are 
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now available. Further, the undimensional IRT models have 
been generalized to multidimensional models such that traits 
may be measured by comparisons within tasks (Kelderman & 
Rijkes, 1994), changes across conditions (Embretson, 1991 ), 
subtasks representing underlying cognitive components 
(Embretson, 1984), or conditioning on test-taking strategy 
(Rost, 1990). Also, the traits may be trait scores, personality 
traits, dispositions, or even attitudes. 

To provide continuity between the new test theory and the old 
test theory, Lord and Novick (1968) derived many classical test 
theory principles from IRT. On the surface, this is good news to 
the busy applied psychologist who knows classical test theory 
but not IRT. The existence of derivations seemingly suggests 
that the rules of  measurement, although rooted in a more so- 
phisticated body of axioms, remain unchanged. 

However, the new rules of measurement are fundamentally 
different from the old rules. Many old rules, in fact, must be 
revised, generalized, or even abandoned. This article has several 
goals. First, to illustrate the depth of the differences between 
measurement principles, a few well-regarded old rules will be 
compared with the corresponding new rules. Second, the basis 
of these new rules will be explained in nonstatistical language. 
Third, the reasons why the new rules of measurement are not 
widely known among psychologists will be explored. 

A C o m p a r i s o n  o f  M e a s u r e m e n t  Rules  

Several old "rules" of measurement may be gleaned from the 
principles of classical test theory or its common extension. 
Other old "rules" are implicit in many applied test development 
procedures. Table 1 shows six old rules that will be reviewed 
here. The six old rules are followed by six corresponding new 
rules, which obviously conflict with the old rules. 

1 would argue that the old "rules" represent common knowl- 
edge or practice among psychologists. These rules have guided 
the development of many, but certainly not all, published psy- 
chological tests. Obvious exceptions are tests that are developed 
by large-scale testing corporations such as the Educational Test- 
ing Service (ETS) and the American College Testing Program 
(ACT), in which non-IRT procedures have been developed to 
circumvent the limitations of  some old rules. That is, nonlinear 
test equating (see Holland & Rubin, 1982) and population-free 
item indexes, such as the delta index used by ETS (see Gullik- 
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Table 1 
Old and New Rules of Measurement 

Rule no. Old rule New rule 

I. The standard error of measurement 
applies to all scores in a particular 
population. 

2. Longer tests are more reliable than 
shorter tests. 

3. Comparing test scores across multiple 
forms depends on test parallelism 
or adequate equating. 

4. Unbiased assessment of item 
properties depends on 
representative samples from the 
population. 

5. Meaningful scale scores are obtained 
by comparisons of position in a 
score distribution. 

6. Interval scale properties are achieved 
by selecting items that yield normal 
raw score distributions. 

The standard error of measurement differs 
across scores, but generalizes across 
populations. 

Shorter tests can be more reliable than 
longer tests. 

Comparing scores from multiple forms is 
optimal when test difficulty levels vary 
across persons. 

Unbiased estimates of item properties 
may be obtained from unrepresentative 
samples. 

Meaningful scale scores are obtained by 
comparisons of distances from various 
items. 

Interval scale properties are achieved by 
justifiable measurement models, not 
score distributions. 

sen, 1950, p. 368) ,  were developed to counter  Old Rule  3 and 
Old Rule  4, respectively. However, these techniques  are not  well 
known  outside large-scale test ing programs,  hence they are no t  
rout inely applied in the development  of  psychological tests. 
Thus,  the old rules character ize  substant ial  pract ice in test 
development.  

Rule 1. The Standard Error o f  Measurement 

Old rule 1. The  s tandard  error  of  m eas u r em en t  applies to all 
scores in a par t icu lar  populat ion.  

New rule 1. The  s tandard  error  of  m eas u r em en t  differs a- 
cross scores (or  response pa t te rns ) ,  bu t  generalizes across 
populations.  

Score in terpre ta t ions  depend on the s tandard  error  of  mea-  
surement .  The  s tandard  er ror  of  m eas u r em en t  is rout inely used 
to cons t ruc t  confidence intervals  for individual  scores. The  con- 
fidence intervals  can guide score in terpre ta t ions  in several ways; 
for example,  an individual 's  pe r fo rmance  may be presented as 
a likely range of  scores ra ther  than  a single score. The  s tandard  
error  of  m e a s u r e m e n t  also is rout inely used to in terpret  differ- 
ences between scores on different tests or subtests. It is impor-  
t an t  to note  tha t  a necessary assumpt ion  for cons t ruct ing  con- 
fidence intervals  in classical test  theory  is tha t  m eas u r emen t  er- 
ror  is d is t r ibuted  normal ly  and  equally for all score levels. 

In classical test theory, the s tandard  er ror  of  m e a s u r e m e n t  is 
derived from populat ion-specif ic  estimates.  The  following well- 
known formula  for the s tandard  error  of  m e a s u r e m e n t  involves 
an est imate of  reliability, r , ,  and  an est imate of  variance,  2 ,  as 
follows: 

SE . . . .  = (1 - r,,) '/~- a. (1)  

Because popula t ions  often differ in reliability and  variability, 
Equat ion  1 will yield different s tandard  errors  of  measurement .  

Figure 1 shows the classical test theory ( C T T )  results for 
SEmsmt for two different populat ions  on a 30-i tem test with a 
no rma l  i tem difficulty range. The  data  in Figure 1 are based on 
1,000 cases per  populat ion.  SEm~,-,,t is plot ted by z scores repre- 
senting trai t  levels. Consis tent  with the assumpt ions  of  CTT, 
SEm~mt is cons tant  across trai t  levels bu t  differs between the 
populations.  

New Rule 1, f rom IRT, conflicts with  bo th  aspects of  Old Rule 
1. To show this  concretely, a trait-level score and a correspond-  
ing SEmsmt were es t imated using the Rasch (1960)  IRT model  
for each person in the same two populat ions  as for CTT. The 
Rasch model  is most  s imilar  to C T T  appl icat ions  because the 
ability pa ramete r  is es t imated from raw total  scores. With  the 
Rasch model,  t rai t  levels were es t imated separately for each 
score or response pat tern,  control l ing for the character is t ics  
(e.g., difficulty) of  the i tems tha t  were adminis tered .  

The  IRT values for SEmsmt in Figure I are identical for the 
two populat ions ( noted  as "IRT-AI1 Popula t ions"  ). In the max- 
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imum-likelihood estimation method, trait level and the corre- 
sponding SEmsmt estimates depend only on the total score or 
response pattern. However, Figure 1 shows that SEmsmt is not 
constant across trait levels. SEmsmt is lowest for moderate trait 
levels (i.e., z scores near zero) and highest for extreme trait lev- 
els. The difference in SEm~t by trait level reflects the distribu- 
tion of item difficulty. For extreme scores, tests usually contain 
too few items that are appropriate for the extreme trait level. 
Consequently, IRT estimates SEm~t to be high for extreme 
scores. 

In IRT measurement errors for each individual trait level are 
estimated, but it is also possible, as in CTT, to have a single 
value to describe the population. In IRT, the composite value is 
a mean of the individual values, whereas in CTT the single value 
applies to all trait levels. A composite value for S E m s m t  for a 
population can. be computed by averaging the IRT estimates 
across individuals. Thus, in Figure l, the various SEmst'S would 
be weighted by the frequency of the abilities to which they cor- 
respond. For the IRT values in Figure l, the composite SEmsmt 
is .33. 

Rule 2: Test Length and Reliability 

Old rule 2. Longer tests are more reliable than shorter tests. 
New rule 2. Shorter tests can be more reliable than longer 

tests. 
In CTT, the Spearman-Brown prophesy formula directly im- 

plies that longer tests are more reliable than shorter tests. Guil- 
ford (1954) showed that lengthening a test by a factor o fn  par- 
allel parts results in true variance increasing more rapidly than 
error variance. If r ,  is the reliability of the original test, the reli- 
ability of the lengthened test r, ,  may be anticipated as follows: 

n r t t  
r,. (2) 

1 + ( n -  1)r u ' 

where n is the ratio of the number of new items to the number 
of old items. Equation 1 may also be applied to shortened tests. 
That is, ifa test with a reliability of.86 is shortened to two thirds 
of the original length (n = .667 ), then the anticipated reliability 
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of the shorter test is .80. Thus, in CTT, shorter tests generally 
imply increased measurement error. The new rule from IRT 
asserts that short tests can be more reliable than longer tests. In 
Figure 2, the IRT SEmsmt is plotted by trait level for four tests 
for 3,000 individuals. Two tests have fixed item content; that is, 
the same items are administered to each individual. In this case, 
it can be seen that IRT, like CTT, has lower SLmsmt error for the 
longer test. The composite SE~smt'S for the 30-item and the 20- 
item tests, respectively, are .349 and .419. 

But, notice that SEmsmt for another 20-item test plotted in 
Figure 2, namely an adaptive test, is drastically smaller for most 
trait levels than for the 30 item fixed content test. Adaptive test 
items are individually selected for a person to be optimally ap- 
propriate for his or her trait level. Thus, items that are too ex- 
treme for the person are avoided. A direct result of adaptive 
testing is to provide very small SEmsmt at all trait levels. The 
composite SEmsm, for the adaptive test in Figure 2 is .279, which 
is smaller than the corresponding composite for the 30-item 
test. The adaptive test has the same item discriminations as the 
items on the fixed content test. 

Thus, the new rule of test length represents the advantage of 
adaptive tests or fixed-content tests. Notice that a longer adap- 
tive test yields smaller SEmsmt error, like CTT. But, as shown by 
the composite measurement errors across trait levels, the 
shorter (adaptive) test can be more reliable than the longer nor- 
mal-range test. 

In fairness to classical test theory, it should be noted that an 
assumption underlying the Spearman-Brown prophesy formula 
is that the test is lengthened with parallel parts. An adaptive test, 
by its nature, does not to meet this assumption. However, the 
point here is that the old rule about test length and reliability 
conflicts sharply with current practice in adaptive testing, 
which is based on the new rule from IRT. 

Rule 3: Interchangeable Test Forms 

Old rule 3. Comparing test scores across multiple forms de- 
pends on test parallelism or test equating. 

New rule 3. Comparing test scores across multiple forms is 
optimal when test difficulty levels vary between persons. 

When individuals receive different test forms, some type of 
equating is needed to compare their scores. In traditional CTT, 
equating meant establishing that the different test forms were 
essentially equal, Gulliksen's (1950) classic text defined strict 
conditions for test parallelism in CTT, which included the 
equality of means, variances, and covariances across test forms. 
According to Gulliksen (1950), if the two tests meet the statis- 
tical conditions for parallelism, then scores may be regarded as 
comparable across forms. 

More recent extensions of CTT have considered the test form 
equating issue more liberally, as score equivalencies between 
forms. So, for example, if an individual receives a score of 21 on 
Test Form A, an expected score on Test Form B may be given. 
Several procedures have been developed equating tests with 
different item properties, such as linear equating and equiper- 
centile equating. These methods are used in conjunction with 
various empirical designs such as random groups or common 
anchor items (see Angoff, 1982, for a summary of several such 
methods). For a simplified example, suppose that both test 
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C l a s s i c a l  T e s t s  
Linear Equating 

I R T  A d a p t i v e  T e s t  
(r = .985) 

Figure 3. Relationship between scores on tests of different difficulties. 

forms could be given to the same group with no carry-over 
effects. A very simple linear equating would involve regressing 
scores from one test form to the other test form. Score equiva- 
lencies between the test forms are established by using the re- 
gression equation to predict scores. This type of  equating 
method can be applied to test forms that have different means, 
variances, and even reliabilities. 

Although even wholly different tests can be linked by the 
newer equating methods, equating error can be problematic.  
That  is, the score equivalencies represent expected values and 
individual fluctuations may be rather large~ Equating error is 
influenced by differences between the test forms, especially in 
test difficulty level (see Peterson, Marco, & Stewart, 1982). 

Thus, test forms with high reliabilities and similar score distri- 
butions will be most adequately equated. 

The effect of  test difficulty differences on equating error may 
be readily seen in Figure 3, top panel. Data for 3,000 examinees 
were simulated for two 30-item test forms with equal item prop- 
erties except for item difficulty level. A linear equating between 
the two test forms is given by the regression line from the easy 
to the hard test, Equating error is readily discerned on Figure 3 
by the dispersion of  scores around the regression line. For a hard 
test score of  zero, examinees are observed with scores ranging 
from 0 to 20 on the easy test. The hard test simply does not 
have the floor to distinguish between these examinees, and so 
equating is not  very satisfactory. Further, a linearequating is not 
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adequate to establish score correspondence. The relationship 
between test scores is obviously nonlinear. The upper panel of 
Figure 3 shows that easy test scores are underestimated at some 
score levels, overestimated at others. The low ceiling of the easy 
test compresses high scores, whereas the high floor of the hard 
test compresses low scores. Thus, a nonlinear regression is 
needed to fully describe score correspondence. The correlation 
between test scores is .805, which yields an expected true score 
correlation for either test of.897 ( i.e., .805 ~/2 ). 

The IRT version of"equating" follows directly from the IRT 
model, which implicitly controls for item differences between 
test forms. The lower panel of Figure 3 shows the same simula- 
tion sample with trait level estimates obtained from 1RT-scaled 
adaptive tests. Because adaptive test items are individually se- 
lected for a person, in large populations, hundreds of different 
"test forms" may be administered. For the data in the lower 
panel of Figure 3, item difficulty differences between "test 
forms" were directly controlled in the trait level estimates from 
the Rasch IRT model. Because the data are simulated, true trait 
level was known. So, this panel shows the regression of true trait 
level on the estimated trait scores from the adaptive tests. It can 
be seen that prediction is more accurate than in the top panel of 
Figure 3, as the correlation is .985. 

Most important, better estimation of trait levels for all indi- 
viduals are obtained from administering difJerent test forms. 
More accurate estimation of each individual means that score 
differences are more reliable. Thus, the new rule from IRT 
means that nonparallel test forms that differ substantially, and 
deliberately, in difficulty level from other forms, yield better 
score comparisons. 

Rule 4: Unbiased Assessment of  I tem Properties 

Old rule 4. Unbiased assessment of item properties depends 
on representative samples from the target population. 

New rule 4. Unbiased estimates of item properties may be 
obtained from nonrepresentative samples. 

Assessing the classical item statistics of item difficulty (i.e., p 
values as the proportion passing) and item-total correlations 
(biserial correlations) yields noncomparable results if obtained 
from unrepresentative samples. Suppose that two biased sam- 
ples are taken from a population: a low group, with scores below 
the mean, and a high group, with scores above the mean. These 
results are taken from the same simulation study as just de- 
scribed, such that approximately half the 3,000 cases fall in 
each group. 

In the upper panel of Figure 4, the estimated p values for 
items are plotted from the two groups. A linear regression 
would indicate that the relative intervals between items is main- 
tained. However, notice that the relationship between p values, 
although monotonic, is not linear. The distances between items 
with high p values is greater in the low group, whereas the dis- 
tances between items with low p values is greater in the high 
group. The correlation between p values is only .800. The bi- 
serial correlations (not shown ) of items with total score differs 
even greater between groups because the relationship was 
curvilinear. 

The lower panel of Figure 4 shows the item difficulty values 
that are obtained by a Rasch model scaling of the same data as 
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shown in Figure 4's top panel. In the lower panel, unlike in the 
top panel, the correspondence of item difficulty values is quite 
close between the two extreme groups. The correlation between 
item difficulty values in the lower panel is .997. 

Rule 5. Establishing Meaningful Scale Scores 

Old rule 5. Meaningful scale scores are obtained by standard 
s c o r e s .  

New rule 5. Meaningful scale scores are obtained from IRT 
trait score estimates. 

Embretson and DeBoeck (1994) noted that test score mean- 
ing depends on specifying an appropriate comparison. A com- 
parison is defined by two features: (a) the standard with which 
a score is compared and (b) the numerical basis of the compar- 
ison (order, difference, ratio, etc.). 

In CTT, score meaning is determined by a norm-referenced 
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Figure 5. Common scale measurement of item difficulty and trait scores. 

standard, and the numerical basis is order. That is, scores have 
meaning when they are compared with a relevant group of peo- 
ple for relative position. To facilitate this comparison, raw 
scores are linearly transformed into standard scores that have 
more direct meaning for relative position. An objection that is 
often raised to norm-referenced meaning is that scores have no 
meaning for what the person actually can do. 

In IRT, a score is compared with items; persons and items are 
calibrated on a common scale. For example, on the right side of 
Figure 5 is a distribution of item difficulties. On the left side of 
the figure is the distribution of scores for a group of people. The 
match between trait level and item difficulty has direct meaning 
for expected item performance. For Item 112 (e.g., with a scale 
value of 1.5 ), people in the distribution who fall below this item 
are more likely to fail than to pass. That is, the probability that 
a person passes a particular item is derived from the match of 
item difficulty to trait level. As in psychophysics, an item is at 
the person's threshold when the person is as likely to pass as to 
fail the item. When an item's difficulty equals the person's trait 
level (i.e., in the Rasch model), then the person's probability of 
failing equals the probability of passing. Or, stated another way, 
the odds are 50/50 for passing versus failing. Thus, analogous 
to psychophysics, the item falls at the person's threshold. If the 
person's trait level exceeds the item, then the person is more 
likely to pass the item. Conversely, if a person's trait level is 
lower than item difficulty, then the odds are more favorable for 
failing the item. 

To summarize, in IRT models, the meaning of a score can 
be referenced directly to the items. If these items are further 
structured by content, substantive trait level meaning can be 
derived. The sample items in the figure are from a mathematics 
word problem test. The substantive features of the sample items 
are shown on the right side of Figure 5. These features were 
derived from a cognitive model of mathematical problem solv- 
ing. People who can solve Item 112 correctly are likely to be able 

to process a complex schema on linguistically difficult problems 
that require algorithmic transformations. Further details are 
given in Embretson (1995). 

In some tests, particularly achievement tests, IRT trait levels 
are also linked to norms. In this case, IRT scores are linearly 
transformed to standard scores. Thus, IRT trait levels also can 
have norm-referenced meaning. 

Rule 6: Establishing Scale Properties 

Old rule 6. (Implicit) Interval scale properties of measures 
are achieved by selecting items to achieve normal raw score 
distributions. 

New rule 6. Interval scale properties are achieved by justifi- 
able measurement models. 

Routine test development procedures for many psychological 
tests include selecting items to yield normal distributions in a 
target population. Even if normal distributions are not achieved 
in the original raw score metric, scores may be transformed or 
normalized to yield a normal distribution. These transforma- 
tions are nonlinear, and so change the relative distances between 
scores. 

Score distributions have implications for the level of mea- 
surement that is achieved. The hard test and easy test data in 
the top panel of Figure 3 yield skewed score distributions. In 
that panel, the best-fit linear regression is obviously inadequate 
to describe the nonlinear relationship between the test scores, 
Figure 6 uses the same data as Figure 3 to show how interval 
scale values are not achieved by CTT but are achieved by IRT. 
In the top panel of Figure 6, the values for the hard-versus-easy 
tests are shown again, here with the appropriate nonlinear re- 
gression curve. 

To understand how score distributions on the two tests influ- 
ence the level of measurement, consider an example of four per- 
sons, shown on Figure 6. On the hard test, Person 2's score is 5 



SPECIAL SECTION: NEW RULES OF MEASUREMENT 347 

35 

30 

25 

20 

15 

10 

5 

0 

C l a s s i c a l  T e s t  T h e o r y  
E a s y  T e s t  S c o r e  

0 I O  20 

H a r d  T e s t  S c o r e  

3O 

4 

2 

0 

-2 

-4 

-6 

Figure 6. 

Item Response Theory 
Log Odds  for  Item Solv ing 

r 

i # + 
.+ - F  

. 4 

, I 
I I 
! 

-3 -2 -1 0 1 2 3 

T r a i t  Level  

t Item Dif f icul ty=-1.5 >~ Item Di f f icu l ty= l .5  • Person 1 

-=~ Person 2 ml Person 3 • Person 4 

Relative distances of scores in classical test theory (CTT) and item response theory (IRT). 

points higher than Person l 's score. The anticipated score 
difference on the easy test is approximately 4 points. Similarly, 
on the hard test, Person 4's score is 5 points higher than Person 
3's score. However, on the easy test, their anticipated score 
differences are less than 1 point. Thus, the relative distances 
between scores are not the same from the hard to the easy test. 
Only ordinal level measurement has been achieved on one or 
both tests. 

Jones ( 1971 ) pointed out that the classical methods to de- 
velop normally distributed trait scale scores will achieve in- 
terval scale measurement under certain assumptions. Specifi- 
cally, these assumptions are that true scores (a) have interval 
scale properties and (b) are normally distributed in the popula- 

tion. Only linear transformations preserve score intervals as 
well as distribution shapes (see Davison & Sharma, 1990, for 
the latter). Thus, if raw scores are normally distributed, then 
only a linear transformation, such as a standard score conver- 
sion, will preserve score intervals to appropriately estimate true 
score. Notice, however, that scale properties are tied to a specific 
population. If the test is applied to a person from another popu- 
lation, can the interval scale properties still be justified? If not, 
then scale properties are population-specific. 

For IRT models, particularly the Rasch model, several arti- 
cles (e.g., Fischer, 1995; Roskam & Jansen, 1984) show how 
interval or even ratio scale properties are achieved. The Rasch 
model also has been linked to fundamental measurement (see 
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Andrich, 1988) because of the simple additivity of the parame- 
ters. A basic tenant of fundamental measurement is additive 
decomposition (see Michel, 1990), in that two parameters are 
additively related to a third variable. In the Rasch model addi- 
tive decomposition is achieved; the log odds that a person en- 
dorses or solves an item is the simple difference between his or 
her trait level, 0j, and the item's difficulty, b~, as follows: 

LogOddij = 0j - b~. (3) 

According to the principle of additive decomposition, in- 
terval scale properties hold if the laws of numbers apply. Spe- 
cifically, the same performance differences must be observed 
when trait scores have the same interscore distances, regardless 
of their overall positions on the trait score continuum. Suppose, 
for example, that the trait level distance between Person 1 and 
Person 2 equals the distance between Person 3 and Person 4. 
Now, these intervals are justifiable if the same performance 
differential exists between the two pairs of persons. This prop- 
erty was not achieved for the CTT tests in the lower panel of 
Figure 6. 

However, the relative performance differentials are main- 
tained across tests of different difficulty for IRT. The lower panel 
of Figure 6 shows the regression of log odds for an easy (bi = 
-1 .5)  and a hard item (bj = 1.5) on trait level. The regression 
lines were obtained directly by applying Equation 3 to the vari- 
ous trait levels to each item. Also shown in the lower panel of 
Figure 6 are trait levels for four persons. As for the hard test in 
the upper panel of Figure 6, the trait level distance between Per- 
son 1 and Person 2 equals the trait level distance between Person 
3 and Person 4. These relative distances are maintained in the 
log odds for both the easy and the hard item. Thus, regardless 
of item difficulty level, it can be seen that the same relative 
difference in performance holds. Maintaining relative distances 
over varying difficulties of items implies that a quality of in- 
terval scale measurement has been obtained. 

Unders tand ing  and Diffusing the 
New Rules in Psychology 

Model-based measurement is complex. Thus, a comprehen- 
sible explanation of the new rules is beyond the scope of this 
short article. A recent chapter ( Embretson, in press-a) explains 
several new rules. Further, several books and edited volumes 
are available on IRT. Hambleton, Swaminathan, and Rogers's 
( 1991 ) book is quite readable for a psychological audience, al- 
though it is limited somewhat by the examples, which were de- 
signed for readers in the education field. 

Psychologists are not generally familiar with model-based 
measurement even though it is not new. Item response theory is 
often traced to Lord's ( 1952 ) monograph on item regression or 
to Rasch's (1960) book. Further, model-based measurement is 
increasingly part of test development practice. IRT scaling is 
now part of several major tests, including the computer adaptive 
form of the Armed Services Vocational Aptitude Battery 
(Department of Defense, 1996), the computerized form of the 
Scholastic Aptitude Test, and the latest revision of the Stanford- 
Binet (Thorndike, Hagen, & Sattler, 1986). As experts in test- 
ing, psychologists should know the fundamentals behind the de- 
velopment of these tests, namely, IRT. 

Psychologists have had little exposure to model-based mea- 
surement for three reasons. First, IRT is statistically sophisti- 
cated as compared with classical test theory. A course on IRT is 
probably best preceded by a full-year course on graduate statis- 
tics. Further, a full course devoted only to IRT may be necessary 
to develop an adequate understanding. A chapter in a book on 
testing is most certainly insufficient. Second, and obviously in- 
teractive with the first reason, measurement courses have been 
declining in graduate schools in psychology. Aiken, West, Se- 
chrest, and Reno's (1990) survey of graduate programs found 
that emphasis on measurement had substantially declined over 
the last 20 years. Graduate students are now barely exposed to 
classical test theory. So, the need for a full course on IRT has 
not fit in with the trends Aiken et al. (1990) observed. Third, as 
of this writing, no adequate textbook for psychologists exists on 
IRT. To be understood by psychology graduate students (and 
their professors), IRT must be connected to psychological con- 
cepts and illustrated by psychological data. 

The textbook issue, obviously, must be addressed by someone 
in the small group of psychologists who are IRT experts. Cur- 
rently, there is no such book available, probably primarily be- 
cause IRT experts have been more concerned with technical is- 
sues than with expositional issues. However, the other two issues 
involve policy in graduate curriculum. Those psychologists 
who have a stake in the methodology surrounding testing need 
to plan for model-based measurement in the curriculum. If not, 
as model-based measurement becomes increasingly routine in 
testing, it is very possible that testing experts will no longer un- 
derstand the principles underlying testing. 
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